
Reconfiguring Metamorphic Robots via SMT: Is It a Viable Way?

Jan Mrázek, Martin Jonáš, and Jiřı́ Barnat

Abstract— We present a new approach to tackle the problem
of lattice-type metamorphic robots reconfiguration. We base
our approach on a reduction to satisfiability modulo theory
(SMT). Unlike the current state-of-the-art solutions, we consider
the spatial limitations of the modules themselves and produce
collision-free plans. We give an in-depth description of the
reduction and discuss several optimizations for our technique.
We also show an experimental evaluation of our approach and
list possible future improvements to our technique.

I. INTRODUCTION

Modular self-reconfigurable robotic platforms, such as M-
TRAN [18], ATRON [16], SMORES [15], or HyMOD [19],
are used to build larger, more complex robots from small
uniform robotic modules. The modules themselves are in-
dependent robotic units with the ability to connect to each
other and to perform limited locomotion. This provides
the metamorphic robots with a unique ability of self-
reconfiguration. However, to fully leverage the versatility of
such a metamorphic robot, a detailed reconfiguration plan,
i.e., a sequence of actions to transform the robot from one
configuration to another, is needed. We expect from the plan
to respect constraints like the physical limits of modules
and surrounding environment, as well as to minimize the
time and energy needed for reconfiguration. Finding such a
plan efficiently, even with profoundly relaxed constraints, has
been proven to be a challenge and is still an open problem.

In this paper, we explore the possibility of leveraging
SMT solvers to tackle the problem of reconfiguration. In
a nutshell, we construct a logic formula that is satisfiable
if and only if there exists a valid reconfiguration plan for a
given metamorphic robot, and if so, we use the model of the
formula as produced by an SMT solver to derive the plan.
Our primary goal is to find out whether such an approach is
a viable one in terms of practical usability.

There is a variety of work dealing with the reconfiguration
problem. The approaches differ mostly in the mathematical
model of the underlying metamorphic system. Some of the
work considers only the logical arrangement of the modules
and ignores their positioning in space. Therefore, the recon-
figuration plan is merely a sequence of connect/disconnect
operations [13]. There the authors show that the problem
of finding the shortest reconfiguration plan between two
configurations is NP-complete.

Other results aim at finding a feasible plan rather than the
shortest one. To name a few, [6] uses the divide and conquer

J. Mrázek and J. Barnat are with Faculty of Informatics, Masaryk
University, Brno, Czech Republic, jan.mrazek@mail.muni.cz,
barnat@fi.muni.cz. M. Jonáš collaborated on the research while he
had been PhD student at Faculty of Informatics, Masaryk University.

approach, [2] uses the state-space search with edit distance
heuristics. As the reconfiguration on connector graphs is NP-
complete, [12] presents a solution to the reconfiguration via
reduction to the Boolean satisfiability problem (SAT). Note
that since these solutions ignore module positioning in space,
they might produce a plan which is not collision-free. Such
plans are suitable for robots with good self locomotion, e.g.,
SMORES [15], [17].

There are also approaches considering module position in
space during the reconfiguration. These are usually moti-
vated by the locomotion of the whole metamorphic robot:
[5] presents some locomotion primitives for Roombots,
[23] presents an algorithm for locomotion through reconfigu-
ration of M-TRANs. [20] presents a reconfiguration to a line
using M-BLOCKS considering the position of the modules
in space. Another approach is used by [22] — they pre-
synthesize individual module locomotion on the surface of a
given scaffold and then consider building larger configuration
containing only these scaffolds.

Using SMT for motion planning is not a new approach,
see, e.g., [14], [21]. However, these works focus on a rather
high-level motion planning of independent robots, while we
are aiming for a rather low-level reconfiguration locomotion
plan.

II. SATISFIABILITY MODULO THEORY

Satisfiability of Boolean formula (SAT) is a problem of
finding an assignment of truth values to variables such that a
given Boolean formula (e.g., (x∧y)→ z) is true [1]. SAT has
been successfully applied to many problems. Unfortunately,
for many areas, Boolean formulas lack expressiveness. The
next logical step is to use first-order logic formulas (e.g., x+
y < 10∧x = y). However, for practical applications, we are
usually not interested in finding a non-standard interpretation
of the symbols +, < in making the formula satisfiable, we
rather interpret the variables as integers and use the standard
interpretation of operations. This is where the satisfiability
modulo theory (SMT) comes in [1].

Not only the introduction of a fixed theory makes the
problem more practical, it usually allows for building more
efficient tools. The tools can apply algorithms suitable for
a given theory. There are several commonly used theories
(see [3] for their list). For our work, we are interested in
the theory of non-linear real arithmetic — basically, first-
order formulas on real-valued variables featuring standard
operations like addition or multiplication. Compared to the
theory of linear arithmetic, the formula can contain the
multiplication of arbitrary expressions [1]. This theory is

(a) RoFI module photo. (b) The module schematics.

Fig. 1: The universal module of the RoFI platform.

usually denoted as NRA (or QF NRA for its quantifier-free
fragment).

III. TERMINOLOGY & MODULE MODEL

We demonstrate our approach on RoFI modules – see
Figure 1a. RoFI arrangement covers many existing robots
and, therefore, serves best to show the reduction principle
(see Section IV). Note that the adaptation of our approach
to another module shape or non-metamorphic modules is
straightforward and does not compromise the main idea.

A. RoFI Module

RoFI module has two bodies that rotate around the γ-
axis (see Figure 1b). Each body has another spherical body
(further referred to as shoe) attached to it, which can rotate
around the axes α and β. There are three connectors on
each shoe labeled X+, X− and Z−. For simplicity, we
assume the shoes have a diameter one, and therefore, the
whole module nicely fits into a unit grid. The coordinate
origin of the module is placed in the center of shoe A. When
two modules connect via a pair of connectors, they can do
so in four different orientations rotated by 90◦.

B. Configuration

A configuration (denoted as c) is a set of modules (denoted
as M) together with their connections (binary relation on
connectors). See Figure 2 for a simple example. For our
purposes, we consider modules to be distinguishable (i.e.,
each module has its identifier). We consider two different
representations to define the position of modules in space:
the internal and the external one. The internal representation
assigns a position to each of the modules’ joints; hence it
does not directly describe the position of individual modules
in the space. On the other hand, the external representation
assigns a spatial position and orientation to each shoe of
each module, leaving out any information about the rotation
of individual joints. Note that both representations have the
same expressive power and can be computed from the other.

C. Reconfiguration

The reconfiguration plan for two configurations cinitial
and ctarget is a sequence (cinitial , c2, · · · , cn−1, ctarget) of
configurations such that: All configurations are strongly con-
nected (as we model modules without locomotion). And for
every two consecutive configurations ci and ci+1 it holds that

Fig. 2: Example of a configuration in the internal represen-
tation.

either they are the same or ci+1 can be obtained from ci by
applying exactly one of the following actions: releasing some
connections, establishment of new connections, or joints’
movement.

IV. RECONFIGURATION USING SMT

Let us assume for now that we can construct a first-order
formula πn(cinitial , ctarget)1 in the theory of non-linear real
arithmetic such that πn is satisfiable if and only if there
exists a valid reconfiguration plan of length n from cinitial
to ctarget . Then we can pass πn to an appropriate solver
(Z3 [8], SMTRAT [7], dReal [11], Yices2 [9], CVC4 [4])
and find out whether it is satisfiable or not. If so, we can
easily extract the reconfiguration plan from the model of the
formula. Note that this approach is similar to bounded model
checking of programs.

To find the shortest path, we may iteratively construct
π2, π3, π4, · · · to find out the first satisfiable formula. A
possible improvement of this naive approach would be either
to iteratively extend the current formula and leverage solver
caching or to guess an upper bound on the length of the
shortest reconfiguration plan and use binary search to find the
lowest n for which πn is satisfiable. The challenge remaining
is the construction of πn, which we describe below.

A. How to Represent a Configuration

Each configuration is represented by a vector c of real and
Boolean variables representing the positions and rotations of
all modules and their connections. Namely, we introduce the
following variables.
• For external description:

– For each shoe A of each module: variables
Ax, Ay, Az ∈ R representing the position of the
shoe in space, and variables Aqa, Aqb, Aqc and Aqd,
which represent its orientation in space using a
quaternion;

– for every two shoes A and B: a Boolean variable
connA,B ∈ B representing whether the shoes are
connected (this may not be necessary, as it can
be easily inferred from the internal description of
connections, which is described below).

Note that we use quaternions to capture the orientation
rather than Euler angles, as their usage yields a simpler
formula.

1Further in the text, we omit the arguments cinitial and ctarget if they
are clear from the context.

• For internal description:
– for each module M : variables Mα,Mβ ∈ [−π2 ,

π
2],

and Mγ ∈ [−π, π], which describe the state of the
three joints of the module,

– for every two connectors a, b of different shoes
A,B, respectively, and an orientation r ∈
{−π2 , 0,

π
2 , π}: a Boolean variable connA,a,B,b,r ∈

B representing whether the connectors are con-
nected with the given rotation.

We use both internal and external representation in the
definition of formula as some properties of the configuration
are more straightforward to express in one representation
rather than in the other.

B. Intuitive Meaning of The Formulas

We define the main formula πn expressing the existence
of a reconfiguration plan of length n in terms of individual,
simple subformulas. Here we give their list together with
their intuitive meaning.
• ϕvalid(c) – the assignment to c represents a valid

configuration,
• ϕstep(c, c

′) – the configuration c can be transformed
to c′ by one action (we consider multiple simultaneous
connections/disconnections as one action),

• ϕconsis(c) – the external and internal descriptions rep-
resented by c are consistent,

• ϕnoIntersect(c) – no two modules of c intersect each
other,

• ϕisConnected(c) – the graph induced by the configura-
tion is connected (the modules form a single robot),

• ϕc(c, c
′) configuration c′ can be obtained from c by

arbitrary many connections,
• ϕd(c, c

′) configuration c′ can be obtained from c by
arbitrarily many disconnections,

• ϕr(c, c
′) configuration c′ can be obtained from c by

arbitrarily many rotations (for now, by multiples of π
2),

• ϕshoeConsistent(M) the shoes of the module M are
oriented and placed in space such that they respect the
position of module joints,

• ϕconConsistent(M,N) the shoes of the modules M and
N are oriented and placed in space such that they
respect any connection between them.

C. Definitions of The Formulas:

• A path of length n exists if there is a sequence of n valid
configurations starting with the initial configuration, ter-
minating with the target configuration, and it is possible
to step between every two successive configurations:

πn
def
= ∃c1, c2, . . . , cn

(
c1 = cstart ∧ cn = cend ∧∧

1≤i≤n

ϕvalid(ci) ∧
∧

1≤i<n

ϕstep(ci, ci+1)
)

• The configuration is valid precisely if its external and
internal descriptions are consistent, no two of its shoes
intersect each other, all pairs of connected shoes are
aligned, and the configuration is connected.
ϕvalid(c)

def
= ϕconsis(c)∧ϕnoIntersect(c)∧ϕisConnected(c)

• The configuration c′ can be obtained from c by one ac-
tion precisely if connections, disconnections, or rotation
can produce it.

ϕstep(c, c
′)

def
= ϕc(c, c

′) ∨ ϕd(c, c′) ∨ ϕr(c, c′)
• External and internal descriptions represented by c

are consistent precisely if the position in space and
orientation of shoes of each module corresponds to the
joint positions, and the position and orientation of each
two connected modules agree.

ϕconsis(c)
def
=
∧

A,B∈modules(c)

ϕshoeConsistent(A,B)

∧
m,n∈modules(c)×modules(c)

ϕconConsistent(m,n)

• No two shoes of a configuration intersect themselves
precisely if the distance of each two shoes is at least 1
(where 1 is the diameter of one shoe). In other words,
to avoid the need to compute square roots, the square
of the distance is at least 1:
ϕnoIntersect(c)

def
=
∧

A,B∈modules(c)(
(Ax −Bx)2 + (Ay −By)2 + (Az −Bz)2 ≥ 1

)
• The configuration c is connected precisely if every

module is reachable by the connections in up to n
steps. See [10] for precise formulation and definition
of ϕisConnected .

• The configuration c′ can be obtained from c by connec-
tions precisely if the two configurations have exactly the
same joint positions and all connections of c are also
present in c′.
ϕc(c, c

′)
def
=
∧

Mω∈joints(c)

(Mω =M ′ω) ∧∧
A,a,B,b,r∈connections(c)

(
connA,a,B,b,r → conn ′A,a,B,b,r

)
• The configuration c′ can be obtained from c by dis-

connections precisely if c can be obtained from c′ by
connections.

ϕd(c, c
′)

def
= ϕc(c

′, c)

• A configuration c′ can be obtained from c by rotations
precisely if no connection was released nor established
and if every intermediate joint position is valid.
ϕr(c, c

′)
def
=
∧

A,a,B,b,r∈connections(c)

(
connA,a,B,b,r↔conn ′A,a,B,b,r

)
∧ϕ′r(c, c′)

where:
ϕ′r(c, c

′)
def
= ∀α′′1 , α′′2 , · · · , α′′n.∧

αi∈joints(c)

(αi ≤ α′′i ≤ α′i ∨ α′′i ≤ α′′i ≤ αi)→

ϕvalid(c[α1 = α′′1 , · · · , αn = α′′n])

• The shoes of the modules are consistent precisely if
their position and orientation agree with the transforma-
tion depicted in Figure 3. We represent the orientation
using quaternions as they lead to a shorter formula
with fewer multiplications and trigonometric functions

compared to representing the orientation using Euler
angles. Quaternions, however, come at the cost of
slightly complicated equality – there exist two quater-
nions representing the same orientation.
ϕshoeConsistentA,B

def
=

ϕtPos(Ax, Ay, Az) ∧
ϕtRot(Aqa, Aqb, Aqc, Aqd) ∧
A′x = Bx ∧A′y = By ∧A′z = Bz ∧
ϕquatEq(A

′
qa, A

′
qb, A

′
qc, A

′
qd,

B′qB , B
′
qb, B

′
qc, B

′
qd)

where:
ϕquatEq(Aqa, Aqb, Aqc, Aqd, BqB , Bqb, Bqc, Bqd)

def
=

(Aqa = Bqa ∧Aqb = Bqb ∧
Aqc = Bqc ∧Aqd = Bqd) ∨
(Aqa = −Bqa ∧Aqb = −Bqb ∧
Aqc = −Bqc ∧Aqd = −Bqd)

ϕtPos(Ax, Ay, Az)
def
=

A′x = Ax + 2 (AqaAqc +AqbAqd) cos (α) +

2 (AqaAqd −AqbAqc) sin (α)
∧

A′y = · · · ∧A′z = · · ·

ϕtRot(Ax, Ay, Az)
def
=

A′qa = Aqa sin
(aγ
2

)
sin
(aα

2
+
aβ
2

)
+

Aqb sin
(aγ
2

)
cos
(aα

2
+
aβ
2

)
−

Aqc cos
(aγ
2

)
cos
(aα

2
− aβ

2

)
−

Aqd sin
(aα

2
− aβ

2

)
cos
(aγ
2

)

∧

A′qb = · · · ∧A′qc = · · · ∧A′qd = · · ·
Note that we omit similar and generic parts of the
formula for the sake of simplicity.

• Shoes of different modules are consistent precisely if
there is no connection between them or if there is a
connection between them and they obey the coordinate
transformation shown in Figure 3.
ϕconConsistent(A,B)

def
=
∧

(a,b,r)∈all connector combinations

connA,a,B,b,r →

ϕtPosa,b,r
(Ax, Ay, Az) ∧

ϕtRota,b,r
(Aqa, Aqb, Aqc, Aqd) ∧

A′x = Bx ∧A′y = By ∧A′z = Bz ∧
ϕquatEq(A

′
qa, A

′
qb, A

′
qc, A

′
qd,

B′qB , B
′
qb, B

′
qc, B

′
qd)

We omit the definitions of ϕtPos and ϕtRot as they are
structurally similar to the previous case and only differ
in the transformation they define. Also, there are 36 of
them.

D. Technical Details

Most of the state-of-the-art SMT solvers for real non-
linear arithmetic cannot process a formula containing uni-

Fig. 3: Illustration of the coordinate transformation between
two shoes of a single module and two shoes of different
modules

versal quantification nor trigonometric functions. The only
exception from the former known to us that can also handle
quantification is the solver dReal [11]. Therefore, the reduc-
tion we have given above cannot be directly used with the
majority of the solvers.

There is no straightforward2 way to remove the universal
quantification in ϕr without an approximation of the solu-
tion. However, checking for intermediate position validity
in discrete steps is often good enough in practice. The
discretization can be easily implemented by limiting maximal
joint position change between steps or by fixing the joint step
value to a fixed value. Note that this approximation changes
the length of the shortest reconfiguration plan as one step
with long movement has to be expressed as a series of shorter
movements. The definition of ϕr for 90◦ steps is:

ϕr(c, c
′)

def
=
∧

A,a,B,b,r∈connections(c)

(
connA,a,B,b,r ↔ conn ′A,a,B,b,r

)
∧

∧
αi∈joints(c)

|αi − α′i| = 0 ∨ |αi − α′i| =
π

2

The reduction we described above uses the functions sine
and cosine to express the relation between internal and
external configuration. Fortunately, the formula does not
contain free-standing appearances of trigonometric function
arguments. By using trigonometric equality for sums, we can
rewrite the formula such that it contains only expressions
in form sinα, sin α

2 , and similarly for cosine. Hence, to
remove these expressions from the formula, we introduce
four new variables: αsin, αsinhalf , αcos , and αcoshalf which
we substitute for the corresponding expressions. Then for
every argument α, we add ϕsinCos(α) (containing well-
known trigonometric identities) to πn:

ϕsinCos(α)
def
= α2

sin + α2
cos = 1

∧ αsin = 2 · αsinhalf · αcoshalf

∧ αcos = 1− 2 · α2
sinhalf

Note that in a similar way, we have to rewrite the alterna-
tive definition of ϕr using only function values and not the
joints’ positions directly.

Given our model of the robots, we see that every two shoes
can have at most one connection, and each connector can

2It can be done by cylindrical algebraic decomposition

be connected at most once. Therefore, in our configuration
representation, at most one of the variables connA,a,B,b,r
for given A and B can be true. Looking at the definition of
ϕvalid , one can note that the formula implies this. However,
many usages of SAT or SMT solvers show that putting
additional, more explicit constraints can lead to a speed-up
in testing satisfiability. Therefore, we include such explicit
constraints in our experiments.

Similarly, we add the possibility to root the first module
as a possible optimization: i.e., put its shoe A at (0, 0, 0)
with no rotation. Since we do not consider the surrounding
environment in our case, the rooting of the first module has
no effect on the shortest reconfiguration plan. Rooting the
module removes a large number of degrees of freedom from
the formula.

V. EXPERIMENTAL EVALUATION

To evaluate our work, we implemented the reduction
in C++ using the API of Z3. Our tool3 can either find
the shortest path using the algorithm from Section IV or
construct the formula πn for all n up to the upper bound
given as input and output them to the SMT-LIB2 format
[3]. It is also possible to include the optimizations pre-
sented in Subsection IV-D. To ensure the correctness of
our implementation, we wrote several unit tests testing the
subformulas on hand-crafted inputs. The inputs were based
partially on experiments presented by [2]. We also included
several simple and several challenging tasks with up to 10
modules.

We chose several SMT solvers based on the results from
SMT-Competition4. We excluded the solver dReal as it runs
out of memory on all our test cases. We compiled several
versions of the solvers and decided the satisfiability of
formulas produced by our tool on several reconfigurations
tasks. For the evaluation, we use a timeout of 2500 seconds
and a memory limit of 20 GB on the AMD EPYC 7371
CPU.

When the formula is satisfiable (based on the knowledge
of the shortest path), the solvers in more than a third of the
cases found a solution. When the formula is unsatisfiable, the
solvers could find a counterexample only for a small number
of steps and modules. The solvers did not handle formulas
without optimizations well. The solving times vary a lot, and
we consider them unpredictable.

We also observed that for several cases, the newer solvers
performed better. We present a summary Table I of two
hand-picked examples of this phenomenon: 3-reattach and 6-
roller. These examples are not the best performing, but they
show our observations the best. The 3-reattach contains three
modules, and the goal is to reattach the traveling module
from one side of the root module to the other one. The 6-
roller transforms the initial blob of six modules into a ring.

The formulas produced by our tool have roughly 18k
nodes for two modules and reconfiguration of length two,

3Available at https://github.com/paradise-fi/RoFI/tree
/master/softwareComponents/smtreconfig

4https://smt-comp.github.io/

49k nodes for three modules, 423k nodes for eight modules.
Since the formula size is linear to the number of steps, it is
easy to extrapolate. The formula size grows to 58k, 212k,
and 4603k, respectively, when we append the constraints
explicitly limiting the number of connections per connector.

When considering the performance of the whole process,
we cannot directly and precisely compare our measurement
with other state-of-the-art tools. Not only do they use a
slightly different model of a module, but the tools are not
available, and their evaluation does not contain any run times.

We also run our benchmarks with the optimizations men-
tioned in Subsection IV-D. Our hypothesis that rooting a
module should help the solver to find the solution more
quickly was confirmed. Without this constraint, even simple
test cases were not solved by any solver. Adding the explicit
constraint on the number of connections of a single connector
dramatically increases the size of the formula. However, for
the Z3 solver, it drastically improved the performance. For
the other solvers, the performance was slightly increased for
small instances; for the others, it made the performance much
worse. Z3 offers a non-standard extension to the SMT-LIB
language, a command to specify the maximum number of
variables out of a given set, which can be true simultaneously.
We suspect that Z3 recognizes our construction and replaces
it with this command internally.

Unfortunately, we see the performance of our approach
as insufficient for direct deployment on a system of meta-
morphic robots. However, we note a positive trend in our
evaluation — the newer versions of the solvers perform much
better than the older ones on some test cases. Therefore, we
hope that with advances in SMT solving, our method without
a change could perform much better in the future.

VI. POSSIBLE IMPROVEMENTS

We think our method can scale better in the future, we
do not consider it perfect, and we are looking for some
improvements.

At first, we can observe that the SMT solvers are far from
being optimized to the type of formulas we produce in our
approach. Hence, getting closer to the SMT community and
providing the community with the formulas we need to solve
may significantly improve the performance of SMT solvers
in our case in the future.

We also performed experiments with omitting constraints
from the formula. We noted that especially when omitting
shoe and connector consistency, the solvers perform much
better. However, and predictably, they produce infeasible
reconfiguration plans. This observation leads us to implement
a counterexample guided refinement. The general idea would
be to check for the satisfiability of a simple formula describ-
ing the reconfiguration without many constraints. If the plan
is feasible, we found a solution. Otherwise, the conflicting
actions are forbidden in the formula by adding some more
constraints, and the process is restarted. However, for this
approach to scale well, it is necessary to have a way of
generalizing the concrete counterexamples to more general
ones. The generalization is what we currently struggle with.

https://github.com/paradise-fi/RoFI/tree/master/softwareComponents/smtreconfig
https://github.com/paradise-fi/RoFI/tree/master/softwareComponents/smtreconfig

TABLE I: Table depicting the ratio of successfully solved formulas and the average solving time for given versions of
solvers. The additional constraints are: rooted module (R) and limit the number of connections per connector (C).

Test case Constraints cvc4-1.5 cvc4-1.7 cvc4-up yices-
2.4.0

yices-
2.5.0

yices-
2.6.1

yices-up z3-4.4.0 z3-4.5.0 z3-4.7.1 z3-4.8.1 z3-up

3-attach –
18 %
223 s

27 %
385 s

27 %
446 s

9 %
0 s

9 %
0 s

9 %
0 s

9 %
0 s

9 %
0 s

18 %
1680 s

9 %
0 s

9 %
0 s

9 %
0 s

R
27 %
5 s

27 %
3 s

27 %
3 s

9 %
0 s

36 %
26 s

36 %
22 s

45 %
28 s

27 %
80 s

36 %
43 s

36 %
27 s

36 %
26 s

27 %
10 s

R C
27 %
10 s

27 %
10 s

27 %
15 s

9 %
0 s

18 %
73 s

18 %
50 s

27 %
60 s

27 %
29 s

27 %
50 s

36 %
39 s

54 %
24 s

27 %
11 s

6-roller –
0 %

–
0 %

–
0 %

–
0 %

–
0 %

–
0 %

–
9 %
0 s

9 %
283 s

0 %
–

0 %
–

0 %
–

0 %
–

R
9 %

391 s
9 %

384 s
9 %

393 s
0 %

–
0 %

–
0 %

–
0 %

–
36 %

1400 s
18 %
716 s

9 %
62 s

9 %
22 s

0 %
–

R C
9 %

835 s
9 %

640 s
9 %

687 s
0 %

–
0 %

–
0 %

–
0 %

–
36 %
415 s

45 %
2388 s

54 %
38 s

81 %
69 s

36 %
28 s

At last, it might be worth it to explore possible op-
timization of our configuration representation, possibly to
even come up with a different representation, which would
simplify the computationally most challenging parts of the
formula – checking ϕshoeConsistentand ϕconConsistent . If we
sacrifice a class of reconfiguration problems requiring non
90◦ rotations, we could leverage a grid-based reconfigura-
tion.

VII. CONCLUSIONS

We have proposed a novel solution for the reconfiguration
of modular metamorphic robots using the reduction to SMT.
Unlike the other work solving similar problems via reduction,
our solution provides collision-free plans. Nevertheless, we
conclude that the direct reduction of the reconfiguration prob-
lem to SMT is not much viable yet. Furthermore, we also
conclude that the speed with which the solvers are improved
does not indicate that the situation will significantly change
in the near future, though the progress in the efficiency of
SMT solvers is undeniable.

VIII. ACKNOWLEDGMENT

This research was supported by ERDF ”CyberSecurity,
CyberCrime and Critical Information Infrastructures Center
of Excellence” (No. CZ.02.1.01/0.0/0.0/16 019/0000822).

REFERENCES

[1] Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications. IOS Press, 2009.

[2] M. Asadpour, M. H. Z. Ashtiani, A. Spröwitz, and A. J. Ijspeert. Graph
signature for self-reconfiguration planning of modules with symmetry.
In International Conference on Intelligent Robots and Systems. IEEE,
2009.

[3] C. Barrett, P. Fontaine, and C. Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[4] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli. CVC4. In Computer Aided
Verification, Lecture Notes in Computer Science. Springer, 2011.

[5] S. Bonardi, R. Moeckel, A. Sproewitz, M. Vespignani, and A. J.
Ijspeert. Locomotion through reconfiguration based on motor primi-
tives for roombots self-reconfigurable modular robots. In ROBOTIK
2012. VDE-Verlag, 2012.

[6] A. Casal and M. H. Yim. Self-reconfiguration planning for a class
of modular robots. In Sensor Fusion and Decentralized Control in
Robotic Systems II, volume 3839. International Society for Optics and
Photonics, SPIE, 1999.

[7] F. Corzilius, G. Kremer, S. Junges, S. Schupp, and E. Ábrahám. SMT-
RAT: an open source C++ toolbox for strategic and parallel SMT
solving. In Theory and Applications of Satisfiability Testing, Lecture
Notes in Computer Science. Springer, 2015.

[8] L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In Tools
and Algorithms for the Construction and Analysis of Systems, volume
4963 of Lecture Notes in Computer Science. Springer, 2008.

[9] B. Dutertre. Yices 2.2. In Computer Aided Verification, volume 8559
of Lecture Notes in Computer Science. Springer, 2014.

[10] Y. Filmus. SAT algorithm for determining if a graph is disjoint.
[11] S. Gao, S. Kong, and E. M. Clarke. dReal: An SMT Solver for

Nonlinear Theories over the Reals. In Automated Deduction – CADE-
24, volume 7898 of Lecture Notes in Computer Science. Springer,
2013.

[12] A. A. Gorbenko and V. Y. Popov. Programming for modular recon-
figurable robots. Programming and Computer Software, 38(1), 2012.

[13] F. Hou and W. Shen. Graph-based optimal reconfiguration planning for
self-reconfigurable robots. Robotics and Autonomous Systems, 62(7),
2014.

[14] F. Imeson and S. L. Smith. An SMT-Based Approach to Motion
Planning for Multiple Robots with Complex Constraints. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2019.

[15] G. Jing, T. Tosun, M. Yim, and H. Kress-Gazit. An End-To-End
System for Accomplishing Tasks with Modular Robots. In Robotics:
Science and Systems XII, 2016.

[16] M. W. Jörgensen, E. H. Östergaard, and H. H. Lund. Modular
ATRON: modules for a self-reconfigurable robot. In 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2004.

[17] C. Liu, M. Whitzer, and M. Yim. A Distributed Reconfiguration Plan-
ning Algorithm for Modular Robots. IEEE Robotics and Automation
Letters, 4(4), 2019.

[18] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and
S. Kokaji. M-TRAN: Self-reconfigurable modular robotic system.
IEEE/ASME transactions on mechatronics, 7(4), 2002.

[19] C. Parrott, T. J. Dodd, and R. Gross. HyMod: A 3-DOF Hybrid
Mobile and Self-Reconfigurable Modular Robot and its Extensions.
In Distributed Autonomous Robotic Systems, volume 6 of Springer
Proceedings in Advanced Robotics. Springer, 2016.

[20] J. Romanishin, J. Mamish, and D. Rus. Decentralized Control
for 3D M-Blocks for Path Following, Line Formation, and Light
Gradient Aggregation. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2019.

[21] P. Surynek. Lazy Compilation of Variants of Multi-robot Path
Planning with Satisfiability Modulo Theory (SMT) Approach. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2019.

[22] P. Thalamy, B. Piranda, F. Lassabe, and J. Bourgeois. Scaffold-based
Asynchronous Distributed Self-Reconfiguration by Continuous Mod-
ule Flow. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2019.

[23] E. Yoshida, S. Murata, A. Kamimura, K. Tomita, H. Kurokawa, and
S. Kokaji. A Self-Reconfigurable Modular Robot: Reconfiguration
Planning and Experiments. International Journal of Robotic Research
– IJRR, 21, 2002.

	Introduction
	Satisfiability Modulo Theory
	Terminology & module model
	RoFI Module
	Configuration
	Reconfiguration

	Reconfiguration using SMT
	How to Represent a Configuration
	Intuitive Meaning of The Formulas
	Definitions of The Formulas:
	Technical Details

	Experimental Evaluation
	Possible Improvements
	Conclusions
	Acknowledgment
	References

